
Unix and Fortran for Physics and Astronomy Exercise 10

Building A Better Bomb Code

In this exercise you will use what you have learned so far about Fortran to write

a program to solve a more “realistic” problem in aerodynamics.

Problem: The assignment is to write a program similar to your previous programs which
computed the trajectory of a bomb released from an airplane (Exercises 08 and 09), but
taking into into account the drag forces on the bomb as it falls.

Once we include the force of drag we must make some assumptions about the size
and shape of the bomb. We will assume that the bomb is a small sack of flour (about
one pound or so) which is dropped from a small airplane. (Pilots do this sometimes for
entertainment to see who can get closest to a target on the ground.) A good first guess for
the altitude and airspeed of this “Flour Bomb” is that it would be dropped from around
200 feet at about 75 knots.

Drag Force: The drag force exerted on an object moving through a fluid (such as air) is
generally proportional to a quantity q, called the “dynamic pressure,” which is the pressure
that would be exerted on the front of the object by bringing a small parcel of the impinging
fluid to rest. Since this is simply the conversion of the kinetic energy of the fluid to the
potential energy of pressure exerted on the object, the dynamic pressure is given by

q = 1

2
ρv2 , (1)

where ρ is the density of the fluid and v is the velocity of the fluid. The drag force on
the object is also proportional to the cross sectional area S the object presents to the
fluid. There are various ways to define what is meant by the “cross sectional area,” but
disregarding such distinctions for the moment this means that the drag force, FD can be
written as

FD = CD q S (2)

where CD is a dimensionless constant of proportionality known as the “coefficient of drag.”
Using Eq. (1) then yields

FD = 1

2
CDSρv2 . (3)

Thus the drag force on the object is proportional to the cross sectional area of the object,
the density of the fluid, and the square of the velocity of (or through) the fluid. Drag force
always acts to resist motion, which means that it acts to slow down the object as it moves
through the fluid.

– 1 –

Unix and Fortran for Physics and Astronomy Exercise 10

Acceleration: The effect of the drag force on the bag of flour as it falls can be computed
by applying Newton’s law that F = ma. The acceleration of the bag will be a = F/m,
where F is the sum of all forces acting on the bag and m is the mass of the bag. It will
be very useful to consider the forces (and accelerations) in the horizontal (x) and vertical
(y) directions separately. Solving first for the acceleration of the bag in the horizontal
direction gives:

ax = −

CDSρvvx

2m
(4)

where the speed v ≡

√

v2
x + v2

y. Note that everything on the right hand side is positive

except for the minus sign and possibly vx. Consequently, this acceleration component will
always be in the opposite direction to the velocity component and will act to slow the
object down. For example, if the velocity component vx is negative (the bag is moving in
the negative x-direction) then the ax is positive, so that the drag force still acts to slow
the object down. In the vertical direction, the force of gravity is negative because it always
pulls the object downward, and combining gravity with the drag force gives

ay = −g −

CDSρvvy

2m
(5)

If the velocity component vy is negative (which means that the object is falling downward)
then the contribution due to the drag force is positive, against the direction of motion.
Drag always acts against the direction of motion.

Computer Simulation: We will model the motion of the bag of flour as it falls by
taking many small time-steps, each of size ∆t, and at each new time we will compute the
acceleration on the bag, the new velocity of the bomb, and the the new position of the
bomb. We must be careful about the order in which we compute these quantities. We
don’t want to put a new value in a variable until we no longer need the old value. Let X

and Y be the position of the bomb and VX and VY be it’s velocity in the horizontal and
vertical directions. Let AX and AY be the acceleration of the bomb in the horizontal and
vertical directions, and let BAGMASS be the mass of the bomb. Then for each time step the
acceleration in both directions is given by something like:

SPEED = (VX**2 + VY**2)**0.5

AX = -CDRAG*SURF*AIRDEN*SPEED*VX/(2.0*BAGMASS)

AY = -CDRAG*SURF*AIRDEN*SPEED*VY/(2.0*BAGMASS)

AY = AY - GRAVITY

Here AIRDEN is ρ, the density of the air, CDRAG is CD, the coefficient of drag, SURF is
S, the cross sectional area of the bag, and GRAVITY is g, the acceleration due to gravity
(9.81 m/sec2 or 32.17 ft/sec2).

Given the accelerations above, the new values of the velocities in both directions are

VX = VX + AX*DT

VY = VY + AY*DT

– 2 –

Unix and Fortran for Physics and Astronomy Exercise 10

Here DT is ∆t, the size of our time steps. With the new velocities we can compute the new
positions:

X = X + VX*DT

Y = Y + VY*DT

This series of computations is to be repeated until the bomb strikes the ground (Y becomes
less than or equal to zero) or until the time in the air reaches 30 seconds. If possible, you
should use the same variable names given here in your own program, to make it easier for
me to read your code.

Terminal Velocity: As the bomb falls under the force of gravity it picks up speed, and
therefore the drag force acting upon it increases. Eventually the drag force will match
the force of gravity. When this equilibrium is reached the bomb will no longer accelerate.
The velocity at which this happens – the velocity at which the drag force exactly matches
the force of gravity – is called the “terminal velocity” of the bomb, because it is the final
velocity attained by the falling object. (In practice, the forces rarely balance exactly.) In
the computer simulation, the signal that the terminal velocity has been reached would be
that the acceleration is at or near zero.

Coefficient of Drag: The exact value of the coefficient of drag of a bag of flour is
unknown. The coefficient of an infinite flat plate should be 1.0, but the coefficient of drag
of a perfect cube is CD = 1.05; for a perfect sphere it is 0.47. Presumably the coefficient of
drag for a flour bomb is between these last two values, but we cannot know this for sure.
Because we do not know the exact value for the coefficient of drag we will compute the
trajectory of the bomb for a number of different values of CD.

If we could drop several flour bombs of known size and mass from an airplane at a
known altitude and airspeed, then measuring where the bomb lands would let us estimate
from our model what is the actual coefficient of drag of a bag of flour. Once CD is known
we can compute where subsequent flour bombs will land.

Inputs: As in previous exercises we must know the altitude from which the flour bomb
is dropped and the airspeed of the aircraft when the bomb is released. You may again
assume that the bomb is dropped from level flight. To compute the drag force we will also
need to know the cross sectional area of the bag of flour and its mass. You will also need
to know the density of air, ρ, but instead of reading in a value you should simply use the
value ρ = 1.29 kg/m3, the density of air under “standard” atmospheric conditions. Since
the size of the bag is only several centimeters in all dimensions we would like to input the
cross sectional area in square centimeters, but this should be converted to SI units (square
meters). The mass of the bomb should be input in grams, and converted to kilograms. It
is possible that the program would be used to compute the trajectories of several bombs
of different size and weight, so an identifying number or label should also be read for each
bomb.

– 3 –

Unix and Fortran for Physics and Astronomy Exercise 10

Thus...

• Your program should first read a single line containing the name or label of the
bomb. Use a character variable for this name (and don’t forget quote marks
when entering this name, unless you use “A” format).

• Your program should then read in a line of information describing the bomb. In
particular, you should read in the cross sectional area of the bomb (in square
centimeters) and the mass (in grams), in that order.

• Finally, your program should read the conditions under which the bomb was
dropped. In particular, it should read the altitude (in feet) and the airspeed (in
knots), in that order, on a single line.

Output: You should use 51 values for CD, ranging from zero to 1.25. It is important to
include zero because we already know the answer for CD = 0.0 from the previous programs.
It is also important to extend the values beyond what is expected, to be sure that we really
get the true value within the range of values studied. We want to use many values, so that
we can pin down the true value of CD as accurately as possible, but at the same time we
want the whole table to fit on one page. A typical printer page has 66 lines on it, so we
want to use less than 66 different values for CD. If we divide the range 0.0 to 1.25 into
50 intervals we get a regular and orderly spacing between values. If there are 50 intervals,
then there should be 51 values of CD.

The results of the computations which will be of interest are the time and position of
impact, as well as the velocities at impact and the accelerations at impact (to determine
whether the terminal velocity has been reached). All of this information should be dis-
played in a well-organized table, with one line for each different value of CD. The value
of CD should be the first item on each line, followed by the time of flight, then position,
velocity and acceleration information. You can either display the position, velocity and
acceleration in the x direction and then the same for the y direction, or you can present
the x and y positions, then velocities, then accelerations. Your table should have a width
of no more than 80 columns, so that it can be viewed on a normal computer screen.

Your calculations, and the vertical and horizontal positions of the bomb as it falls
should now all be in meters rather than feet.

Additional information about the bag (its size and mass) and the altitude and airspeed
of the drop – should be displayed at the top of the table. Don’t forget to include units for
all numbers.

As in the previous exercise, your output should give some kind of indication when a
simulation does not finish (the bomb did not yet reach the ground). To make your output
easy to read you should put this indicator on the same line as the other information for a
given value of CD.

– 4 –

Unix and Fortran for Physics and Astronomy Exercise 10

Optional Improvements: One optional improvment you may choose to make to your
code is to have it continue to read additional bomb data and repeat the calculations for
those additional data, as long as there are data available. In order to do this you will need
to learn how to use the END= clause of the READ statement.

Note: If you are familiar with calculus then you may like to know that your program is
finding the numerical solution to a differential equation (F = ma) by what is known as
Euler’s method. If you are not yet familiar with calculus then it may interest you to know
that you are doing calculus anyway.

References:

1. Hoerner, Sighard F., “Fluid-Dynamic Drag” (Hoerner Fluid Dynamics, Albu-
querque, N.M., 1965)

2. “Topic 1: Projectile Motion with Air Resistance,”
http://wps.aw.com/wps/media/objects/877/898586/topics/topic01.pdf

– 5 –

