
Python Programming for Physics and Astronomy Exercise 02

Aircraft Weight and Balance

In this exercise you will write a simple program to perform a weight and bal-

ance calculation for a small aircraft, while learning to use the “assignment”

statement.

An aircraft will not fly correctly if it is over its maximum gross weight, or if the center
of gravity (CG) is not within a prescribed range. It is the responsibility of the pilot in
command to determine before each flight that the aircraft weight and center of gravity are
within acceptable limits. Figure 1 illustrates the idea of center of gravity position for a
small aircraft.

DATUM

DATUM

ARM (-) ARM (+)

C.G. RANGE

FWD LIMIT AFT LIMIT

STATION 70

10 LBS

MOMENT = 700 LBS-IN

ARM +70’’

STATION 0

WT

Figure 1: Weight and balance illustrated.

The gross (total) weight is simple to compute: add the empty weight of the aircraft,
the weight of the pilot and passengers, the weight of any baggage, and the weight of the
fuel. If wi is the ith item out of these four things then the total weight W is

W =

4∑

i=1

wi (1)

– 1 –

Python Programming for Physics and Astronomy Exercise 02

The center of gravity is almost as simple to calculate. Each of the items mentioned above
has a “moment,” which is the product of the weight of the item and it’s “arm,” which is
the distance of the object fore (-) or aft (+) from some reference point (often the firewall
between the engine and the cabin). If di is the distance of the ith object (or “station”)
from the reference point, then the position of the center of gravity, dcg, is the total moment
divided by the total weight:

dcg =
1

W

4∑

i=1

(wi × di) . (2)

Variables and Assignments

Calculations in most computer systems are based on some kind of “assignment” statement.
The basic idea is that you calculate a result or specify a value, and then you “assign” that
value or result to a variable. Just as on a chalk board, a “variable” acts as a named
place-holder for the value. But on a chalk board variables usually have single letter names,
like x or y or z. Most computer systems allow you to expand variable names to multiple
letters, and possibly numbers and even the underscore character.

In Python variable names can be of any length, and can consist of letters, numbers, and
the underscore character, provided the name does not begin with a digit. Variable names
cannot have spaces, but the underscore can be used for separation. Variable names in
Python are case-sensitive, which means uppercase and lowercase are different. The names
Force and force are treated as separate variables. You can use mixed capitalization to
make variable names more readable. For example: NumberOfElements.

The form of the assignment statement is that you name the variable to hold the result,
then an equal sign, then a value or mathematical expression to specify what is to be stored
in that variable. For example:

Sum = 2 + 2

rsq = x*x + y*y + z*z

One curious form of the assignment statement is

N = N + 1

On a chalk board or on paper this makes no sense; there is no value of N which is a solution
if this is treated as an algebraic equation. But this is not an equation to be solved, it is an
assignment statement. This statement means “take the value in the variable named ’N’,
add one to it, and then store the result back into the variable named ’N’.”

Each assignment statement “assigns” a value to a variable. Another way to think of
it is that variables are like lockers or cubbies which can hold your stuff. The name of
the variable is the name of the locker or cubby holding something. Whenever a variable
name is used in a mathematical expression, the computer uses whatever is currently stored
in that location. An assignment statement puts something else in that location (and the
previous contents disappear.)

– 2 –

Python Programming for Physics and Astronomy Exercise 02

Mathematical Operations

In Python, as well as many other computer languages, the mathematical operations of
addition, subtraction, multiplication, and division, are specified by the characters +, -,
*, and /. In Python the ** operator is used for exponentiation, to raise the value in a
variable or expression to a power. So an assignment statement to implement the famous
equation E = mc2 would be

E = m * c**2

Spaces in equations are ignored, but can improve readability, so the spaces around the *

character here are not required, but may be helpful.

You can use parentheses to control the order of operation, just as you do on a chalk
board. Without parentheses, the exponentiation operator ** is applied first, then multi-
plication and division, then addition and subtraction.

Editing Scripts with IDLE or Thonny

To edit an existing Python script (a .py file) you can first open IDLE or Thonny and
then pull down the “File” menu to “Open”. But there is also a useful shortcut, using a
right-click on the file icon. It’s the same in principle on any kind of computer, but slightly
different for each:

Windows: Right-click on the file icon, and pull down the menu to either “Edit with
IDLE” or “Edit with Thonny”. (If neither is available, try “Open with” and select
one or the other.)

MacOS: Control-click on the file icon, pull down to “Open With”, and select IDLE
or Thonny.

Raspberry Pi: Right-click on the file icon, pull down to “Open With >” and then
to “Open With....” Open the “Programming” node and select “Python 3 (IDLE)”
or “Thonny”. After you do this once that option will appear in the list presented
whenever you right-click on a Python file and pull down to “Open With >”.

Launching Python Scripts with the Mouse

The reason you have to right-click on the icon (or control-click on a Mac) to edit a Python
script is that double-clicking is reserved for running the script, at least if you are using
IDLE.* Though if you are using Thonny then double-clicking on the icon will simply open
the file for editing, and you then press the “Play” button to run your script.

* On a Raspberry Pi you will have to configure this behavior, but it’s easy to set up.

– 3 –

Python Programming for Physics and Astronomy Exercise 02

If you are using IDLE then double-clicking on the file icon for any .py file will run
immediately; a window will pop up to show the output, and then the window will disappear
when the script is done. Unfortunately the window may be gone before you can read it.
To deal with this, you can add the following instruction to the very end of your scripts:

input("Press Enter to exit...")

Then the output window will pop up when you double-click on the icon, but won’t disap-
pear until you press the Enter key.

Assignment

Your goal for this exercise is to write a Python script which computes both the gross
(total) weight and the location of the center of gravity (CG) of a small aircraft having four
stations.

To complete this exercise you must do the following:

1. Use the following data for a small plane (a typical Cessna 150) to compute the
gross weight and the position of the center of gravity:

Item Weight (lbs) Arm (inches)

Aircraft 1107 34.15

Pilot and passenger 340 39.12

Baggage 10 63.77

Fuel 135 42.22

2. Assign each of the numerical values in the table to a variable with a meaningful
name. The names do not have to be long or use complete words, but they
should be distinguishable and recognizable. Remember, underscore is an allowed
character in Python variable names (though you may not need to know that for
this program).

3. Then use those variables to compute the gross weight of the aircraft and the
position of the center of gravity, storing each into other variables, which also
have meaningful names. Use the simplest arithmetic you can. Some people find
it useful to store intermediate results (like sums) in additional variables.

4. Finally, output the results. Be sure to label the two quantities correctly, and
include their proper units.

5. Remember to include proper comments in your code, and remember that blank
lines can be included for readability.

6. Print or save both your program and a sample of the output and give both to
your instructor.

– 4 –

