Python Programming for Physics and Astronomy Exercise 07

Building a Better Bomb Code

In this exercise you will use what you have learned so far about Python to write
a program to solve a more realistic problem in aerodynamics — a flour bomb
which has air resistance. You will also learn how to plot graphs with more than
one curve, and about “global variables.

The main goal of this exercise is to write a program similar to the previous exercises —
which computed the trajectory of a bomb released from an airplane — but now taking into
account the drag forces on the projectile as it falls.

Once we include the force of drag we must make some assumptions about the size and
shape of the projectile. We will assume that the “bomb” is a small sack of flour (about
one pound or so) which is dropped from a small airplane. Pilots do this sometimes for
entertainment to see who can get closest to a target on the ground. A good first guess for
the altitude and airspeed of this “Flour Bomb” is that it would be dropped from around
200 feet at about 75 knots.

Drag Force

The drag force exerted on an object moving through a fluid (such as air) is generally
proportional to a quantity ¢, called the “dynamic pressure,” which is the pressure that
would be exerted on the front of the object by bringing a small parcel of the impinging
fluid to rest. Since this is simply the conversion of the kinetic energy of the fluid to the
potential energy of pressure exerted on the object, the dynamic pressure is given by!

q=35pv°, (1)

where p is the density of the fluid and v is the velocity of the fluid. The drag force on
the object is also proportional to the cross sectional area A the object presents to the
fluid. There are various ways to define what is meant by the “cross sectional area,” but
disregarding such distinctions for the moment this means that the drag force, Fp can be
written as

Fp=CpqA (2)

where Cp is a dimensionless constant of proportionality known as the “coefficient of drag.”
Using Eq. (1) then yields
FD = %ODA/)”U2 . (3)

Thus the drag force on the object is proportional to the cross sectional area of the object,
the density of the fluid, and the square of the velocity of (or through) the fluid. Drag force

1" Hoerner, Sighard F., “Fluid-Dynamic Drag” (Hoerner Fluid Dynamics, Albuquerque,
NM, 1965)

Python Programming for Physics and Astronomy Exercise 07

always acts to resist motion, which means that it acts to slow down the object as it moves
through the fluid.

Acceleration

The effect of the drag force on the bag of flour as it falls can be computed by applying
Newton’s law that F = ma. The acceleration of the bag will be a = F/m, where F is
the sum of all forces acting on the bag and m is the mass of the bag. It will be useful
to consider the forces (and accelerations) in the horizontal (x) and vertical (y) directions
separately. (In other words, F is a “vector.”) Solving first for the acceleration of the bag
in the horizontal direction gives:

CpApvv,
= —ZRLPs 4
a 5o (4)

where the speed v = | /v2 + vg. Note that every component of the right hand side of this

equation is positive, except for v,, which may be positive or negative. With the overall
minus sign, this means that the acceleration in this direction will always be in the opposite
direction of the velocity, and will act to slow it down in this direction. For example, if the
velocity component v, is negative (the bag is moving in the negative x-direction) then the
a, is positive, so that the drag force still acts to slow the object down. This is exactly as
it should be, so we don’t need to take special steps to get the direction of the acceleration
correct.

In the vertical direction, the force of gravity is negative, because it always pulls the
object downward, and combining gravity with the drag force gives

CpApvv
_ ey (5)

Qy = —

4 g 2m
If the velocity component v, is negative (which means that the object is falling downward)
then the contribution due to the drag force is positive, again against the direction of
motion. Drag always acts against the direction of motion, and this equation automatically
incorporates that idea.

Computer Simulation of Varying Forces

Computing the path of the projectile is now more complicated than before, because the
forces on it change with time. We will model the motion of the bag of flour as it falls by
taking many small time-steps, each of size At, and at each new time we will compute the
new acceleration on the bag, the new velocity of the bomb, and then the new position of
the bomb. We must be careful about the order in which we compute these quantities. We
don’t want to put a new value in a variable until we no longer need the old value.

Let x and y be the position of the bomb, in meters, and vx and vy be it’s velocity in
the horizontal and vertical directions, in meters/second. Let ax and ay be the acceleration
of the bomb in the horizontal and vertical directions, in m/s?, and let mass be the mass of

- 92—

Python Programming for Physics and Astronomy Exercise 07

the bomb, in kg. Then for each time step the acceleration in both directions is given by
something like:

speed = (vx**2 + vy**2)**0.5

ax = -Cdrag*Area*airden*speed*vx/(2.0*mass)
ay = -CdragxAreaxairden*speed*vy/(2.0*mass)
ay =ay - g

Here airden is p, the density of the air, Cdrag is Cp, the coefficient of drag, Area is the
cross sectional area of the bag, and g is the acceleration due to gravity (9.807 m/s?).

Given the accelerations above, the new values of the velocities in both directions are

vx + axxdt
vy + ay*dt

pd
vy

Here dt is At, the size of our time steps. With the new velocities we can then compute
the new positions:

X + vx*dt
y + vy*dt

X
y

This series of computations is to be repeated (with t increased by dt on each step) until
the bomb strikes the ground (y becomes less than or equal to zero) or until the time in
the air reaches 30 seconds.

Terminal Speed

As the bomb falls under the force of gravity it picks up speed, and therefore the drag force
acting upon it increases. Eventually the drag force will match the force of gravity. When
this equilibrium is reached the bomb will no longer accelerate. The speed at which this
happens — the speed at which the drag force exactly matches the force of gravity — is called
the “terminal speed” of the bomb, because it is the final velocity attained by the falling
object. In the computer simulation, the signal that the terminal speed has been reached
is that the acceleration is at or near zero.

Coefficient of Drag

The exact value of the coefficient of drag of a bag of flour is unknown. The coefficient of an
infinite flat plate should be 1.0, but the coefficient of drag of a perfect cube is Cp = 1.05,
and for a perfect sphere it is 0.47. Presumably the coefficient of drag for a flour bomb is
between these last two values, but we cannot know this for sure. Because we do not know
the exact value for the coefficient of drag, we will compute the trajectory of the bomb for
a number of different values of Cp.

If we could drop several flour bombs of known size and mass from an airplane at a
known altitude and airspeed, then measuring where the bomb lands would let us estimate

Python Programming for Physics and Astronomy Exercise 07

from our model what is the actual coefficient of drag of a bag of flour. Once Cp is known
we can compute where subsequent flour bombs will land. f

Plotting Multiple Curves

In an earlier exercise you learned how to plot a graph in Python using the MatPlotLib
module. Plotting more than one curve on the same graph is almost as easy. First, begin
with

import matplotlib.pyplot as plt
plt.figure()

early on, before you do any calculations, to set things up. This just starts the creation
of the graph. Then, within your nested loops, your script would repeatedly clear and fill
arrays for x and y values and then call

plt.plot(xray,yray)

to add another curve to the graph. Finally, after all of the loops have finished, add the
plot title and axes labels and then save and/or show the plot as before. That’s all there is
to it.

Global Variables

As you have already learned, you can pass values to a function via the list of arguments.
Functions can also make use of the values of variables which are defined outside of the
body of the function. Variables defined outside of any function are said to have a “global
scope.” In contrast, variables which are defined inside the body of a function only exist
inside that function, and are said to have “local” scope.

One thing you have to be careful about is assigning a value to a variable with global
scope from inside a function. This will cause an error, unless you have declared the global
variable to be global in that function, using the global statement. For example, the
function dropit () from the previous exercise could be set up to keep a count of how many
times it has been used, like so:

Ndropit = 0O
def dropit(Altitude, Vx0) :

global Ndropit
Ndropit = Ndropit + 1

Declaring the variable Ndropit to be global inside the function is required to be able to
modify its value. Try commenting out the global statement and see what happens.

Python Programming for Physics and Astronomy Exercise 07

String Variables

In previous assignments you have already been introduced to character string “constants,”
sometimes called “literals.” In fact, you used the string literal “Hello, World!” in your
first Python program.

Almost any text enclosed between double quotes is a string literal. Single quotes also
work. It is also possible to assign string values to variables, and to ask for string input
instead of numerical values, and use string variables in print () statements.

The input () function actually returns a character string value, which is why you have
to then feed the result to the float() function, which converts whatever argument it is
given to a floating point number. So to put someone’s name into a variable as a character
string you could simply say something like:

their_name = input("What is your name? ")

You will easily find lots of information about Python strings online.*

Assignment

The overall goal of this exercise is to simulate the fall of an object dropped from an
airplane, now including air resistance. Your code will step the object forward in very small
increments of time until it hits the ground. Your script will repeat this calculation for a
variety of different values of the coefficient of drag. The results will be reported both in a
table and in a graph with multiple curves.

To complete this exercise you must do the following:

1. Introduction: As before, your script should print a brief introduction that
describes what it does.

2. Inputs: Your program should first read in a line of information describing the
flour bomb. In particular, the cross sectional area of the bomb (in square cen-
timeters) and the mass (in grams), in that order. These should be converted to
square meters and kilograms, respectively

Next, your script should read the conditions under which the bomb is to be
dropped. In particular, the altitude (in feet) and the airspeed (in knots), in that
order, on a single line. These should be converted to meters, and meters per
second, respectively. All internal calculations will now use the metric system.

You will also need to know the density of air, p, but instead of reading in a
value you should simply use the value p = 1.29 kg/m3, which is the density of
air under “standard” atmospheric conditions.

Finally, read in a character string label for the experiment. Your script should
read this in last, but it should print it out in the first line of the final report.

* For example, see https://www.w3schools.com/python/python_strings.asp

o

Python Programming for Physics and Astronomy Exercise 07

3. Coefficient of Drag: Your script should simulate the dropping of the bomb
from the same initial altitude and airspeed for 51 evenly-spaced values for the
coefficient of drag, Cp, ranging from zero to 1.25. It is important to include zero,
because we already know the answer for C'p = 0.0 from the previous programs
(or simple pencil and paper calculations). It is also a good idea to extend the
values beyond what is expected, to be sure that we really get the true value
within the range of values studied. We want to use many values, so that we can
pin down the true value of C'p as accurately as possible, but at the same time
we want the whole table to fit on one page.

4. Computation: For each value of the coefficient of drag, your script will compute
the complete trajectory of the falling object until it hits the ground (or until 30
seconds have passed). You may again assume that the bomb is dropped from
level flight.

You script must do this using a function, called stepit(), which takes as
input parameters (“arguments”) the coefficient of drag, Cp, then the initial al-
titude in meters, and then the initial forward speed, in meters per second, in
that order. The function must return the results as a list which contains the
time, then the position of the impact, then the velocity at impact, and then the
acceleration at impact. Each of the position, velocity, and acceleration will be
lists containing two values, the first being the horizontal value and the second
being the vertical value (so each represents the components of a “vector”). Thus
the function will return a list containing several lists.

Your stepit() function should not print anything during the drop. The
function should use the same variable names internally for position, velocity, and
acceleration as used above, to make it easier for the instructor to read.

To compute the drag force your function also needs to know the cross sectional
area of the bag of flour and its mass, as well as the density of air. These are to
be obtained using “global” variables.

5. Output: A typical printer page has 66 lines on it, so we want to use less than
66 different values for C'p. If we divide the range 0.0 to 1.25 into 50 intervals we
get a regular and orderly spacing between values. If there are 50 intervals, then
there should be 51 values of Cp.

The results of the computations which will be of interest are the time and
position of impact, as well as the velocities and accelerations at impact (to de-
termine whether the terminal speed has been reached). All of this information
should be displayed in a well-organized table, with one line for each value of Cp.
The value of Cp should be the first item on each line, followed by the time of
flight, then position, velocity and acceleration information. For each of position,
velocity, and acceleration, display first the horizontal value and then the vertical
value. These distances should be converted back into units of feet.

Your table should have a width of no more than 80 characters, and each
column in the table should have a title at the top naming the quantity listed

Python Programming for Physics and Astronomy Exercise 07

and its units. The numerical values shown in the table should not have excessive
digits past the decimal point.

Additional information about the simulation should be displayed above the
table, starting with the character string label for the experiment. After that,
report the size and mass of the bag and the altitude and airspeed of the drop.
Don’t forget to include units for all numbers.

6. Graph: Your script should also produce a single graph, created using the Mat-
PlotLib pyplot module, showing the paths of all 51 trajectories which your
code computed. Python will automatically change the colors between curves, so
the result should be quite colorful. Don’t forget that your graph must have a
proper title and proper labels on the axes. Each curve should be produced in
the stepit () function, which should call the plt.plot() function as illustrated
previously. The units for lengths can be metric.

Representative values you could use to test your code are an area of 105 cm?, a mass of
453 g (that’s one pound), an altitude of 200 ft, and an airspeed of 75 kts. These represent
a friendly competition for a local flying club flying Cessna 150’s.

Remember that you can check this script by comparing the results for Cp = 0 to
results from your previous scripts (or from hand calculations).

If you are familiar with calculus then you may like to know that your program is finding
the numerical solution to a differential equation (F = ma) by what is known as Euler’s
method. If you are not yet familiar with calculus then it may surprise you to know that
you are doing calculus anyway.

